Skip to content
AKKORD Logo AKKORD Logo
  • Home
  • Goals
  • Partners
    • DFKI
    • IPS
    • BtF
    • VPE
    • Polymerge
    • ERCO
    • Miele
    • Volkswagen
    • Arendar
    • CONTACT Software GmbH
    • mosaiic
    • Neocosmo
    • PDTec
    • RapidMiner
  • Best Practice Stories
    • Industrial Engineering
    • Quality Management
    • Prospective Resource Planning
    • Anomaly Detection
    • Competence Development
    • Data Acquisition
    • Business Model Development
    • Implementation and Rollout Strategies
  • Publications
  • News
  • Contact
  • ENEN
    • DEDE
    • ENEN
AKKORD at the Industrial Data Science Conference 2020
By Marius Syberg|2022-02-08T13:31:53+01:00October 23rd, 2020|

About the Author: Marius Syberg

Marius Syberg, M. Sc., studied industrial engineering with a specialisation in production management and industrial management at the Technical University of Dortmund. He works as a research assistant at the Institute of Production Systems at TU Dortmund University. His work focuses on the optimisation of production systems in the context of dynamic value stream analysis, the strategic introduction of Industry 4.0 and the digitalisation of manufacturing companies, in particular the empowerment of companies for the application of Industrial Data Science.

Related Posts

  • 3rd work report from the research area “Data Backend System”
    3rd work report from the research area “Data Backend System”
  • Tenth AKKORD Consortium Meeting
    Tenth AKKORD Consortium Meeting
  • Demonstrator: Sentiment Analysis & Business Model Aspects
    Demonstrator: Sentiment Analysis & Business Model Aspects
  • Second work report from Use Case 2: “Data-driven networked quality management”
    Second work report from Use Case 2: “Data-driven networked quality management”
  • Presentation of the AKKORD research project at the automatica trade fair 2022 in Munich.
    Presentation of the AKKORD research project at the automatica trade fair 2022 in Munich.

Datenschutz

Impressum

Kontakt

BETREUT VOM:

GEFÖRDERT VOM:

Förderhinweis: Das Vorhaben (Förderkennzeichen: 02P17D210) wurde im Rahmen des Förderprogramms „Industrie 4.0 – Kollaborationen in dynamischen Wertschöpfungsnetzwerken (InKoWe)“ vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und vom Projektträger Karlsruhe (PTKA) betreut. Es wurde kofinanziert im Programm „Innovationen für die Produktion, Dienstleistung und Arbeit von morgen“.

© Copyright 2023
Go to Top